
Hurricane

Blueshoe

Oct 05, 2022

CONTENTS:

1 Introduction 3

2 Application Server 5
2.1 Run the application server . 5
2.2 Django System Custom Checks . 6
2.3 Probe endpoints . 7
2.4 Management commands . 8
2.5 Webhooks . 8
2.6 Check migrations . 9
2.7 Settings . 9
2.8 Logging . 9

3 AMQP Worker 11
3.1 Run the AMQP (0-9-1) Consumer . 11
3.2 Example AMQP Consumer . 11

4 Test Hurricane 13

5 Debugging Django applications 15

6 Metrics 17
6.1 Builtin Metrics . 17
6.2 Custom Metrics . 17
6.3 Disable Metrics . 18

7 Todos 19

8 API Reference 21
8.1 hurricane.management . 21
8.2 hurricane.server . 23
8.3 hurricane.metrics . 24
8.4 hurricane.amqp . 25
8.5 hurricane.webhooks . 26
8.6 Indices and tables . 27

Python Module Index 29

Index 31

i

ii

Hurricane

Hurricane is an initiative to fit Django perfectly with Kubernetes. It is supposed to cover many capabilities in order
to run Django in a cloud-native environment, including a Tornado-powered Django application server. It was initially
created by Blueshoe GmbH.

Table of Contents

• Introduction

• Application Server

– Run the application server

– Django System Custom Checks

– Probe endpoints

– Management commands

– Webhooks

– Check migrations

– Settings

– Logging

• AMQP Worker

– Run the AMQP (0-9-1) Consumer

– Example AMQP Consumer

• Test Hurricane

• Debugging Django applications

CONTENTS: 1

https://www.djangoproject.com/
https://kubernetes.io/
https://www.tornadoweb.org/
https://www.blueshoe.de/

Hurricane

2 CONTENTS:

CHAPTER

ONE

INTRODUCTION

Hurricane is an initiative to fit Django perfectly with Kubernetes. It is supposed to cover many capabilities in order
to run Django in a cloud-native environment, including a Tornado-powered Django application server. It was initially
created by Blueshoe GmbH.

Django was developed with the batteries included-approach and already handles most of the challenges around web
development with grace. It was initially developed at a time when web applications got deployed and run on a server
(physical or virtual). With its pragmatic design it enabled many developers to keep up with changing requirements,
performance and maintenance work. However, service architectures have become quite popular for complex applica-
tions in the past few years. They provide a modular style based on the philosophy of dividing overwhelming software
projects into smaller and more controllable parts. The advantage of highly specialized applications gained prominence
among developers, but introduces new challenges to the IT-operation. However, with the advent of Kubernetes and the
cloud-native development philosophy a couple of new possibilities emerged to run those service-based applications
even better. Kubernetes is a wonderful answer for just as many IT-operation requirements as Django is for web de-
velopment. The inherent monolithic design of Django can be tempting to roll out recurring operation patterns with
each application. It’s not about getting Django to run in a Kubernetes cluster (you may already solved this), it’s about
integrating Django as tightly as possible with Kubernetes in order to harness the full power of that platform. Creat-
ing the most robust, scalable and secure applications with Django by leveraging the existing expertise of our favorite
framework is the main goal of this initiative.

Using a Tornado-powered application server gives several advantages compared to the standard Django application
server. It is a single-threaded and at the same time a non-blocking server, that includes a builtin IO Loop from asyncio
library. Django application server is blocked while waiting for the client. On the other hand a Tornado application
server can handle processes asynchronously and thus is not blocked while waiting for the client or the database. This
also gives the possibility to run webhooks and other asynchronous tasks directly in the application server, avoiding the
usage of external asynchronous task queues such as Celery.

3

https://www.djangoproject.com/
https://kubernetes.io/
https://www.tornadoweb.org/
https://www.blueshoe.de/
https://docs.python.org/3/library/asyncio.html

Hurricane

4 Chapter 1. Introduction

CHAPTER

TWO

APPLICATION SERVER

2.1 Run the application server

In order to start the Django app run the management command serve:

python manage.py serve

This command simply starts a Tornado-based application server ready to serve your Django application. There is no
need for any other application server.

Command options for serve-command:

Serve Command Op-
tion

Description

--static Serve collected static files
--media Serve media files
--autoreload Reload code on change
--debug Set Tornado’s Debug flag (don’t confuse with Django’s DEBUG=True)
--port The port for Tornado to listen on (default is port 8000)
--interface Set a host name for probe server
--startup-probe The exposed path (default is /startup) for probes to check startup
--readiness-probe The exposed path (default is /ready) for probes to check readiness
--liveness-probe The exposed path (default is /alive) for probes to check liveness
--probe-port The port for Tornado probe routes to listen on (default is the next port of –port)
--req-queue-len Threshold of queue length of request, which is considered for readiness probe, default

value is 10
--no-probe Disable probe endpoint
--no-metrics Disable metrics collection
--command Repetitive command for adding execution of management commands before serving
--check-migrations Check if all migrations were applied before starting application
--webhook-url If specified, webhooks will be sent to this url
--pycharm-host The host of the pycharm debug server
--pycharm-port The port of the pycharm debug server. This is only used in combination with the

‘–pycharm-host’ option
--max-lifetime If specified, maximum requests after which pod is restarted

Please note: req-queue-len parameter is set to a default value of 10. It means, that if the length of the asynchronous
tasks’ queue will exceed 10, readiness probe will return the status 400 until the length of the queue gets below the
req-queue-len value. Adjust this parameter if you want the asynchronous task queue to be larger than 10.

5

Hurricane

2.2 Django System Custom Checks

The liveness-probe endpoint invokes Django system check framework. This endpoint is called in a certain interval by
Kubernetes, hence we get regular checks on the application. That’s a well-suited approach to integrate custom checks
(please check out our guide on how to do that, or refer to the Django documentation) and get health and sanity checks
for free.

In all the subsequent examples, we use an example app components with an example model Component. Here is an
example of a custom check:

src/apps/components/checks.py
import logging

from django.core.checks import Error

from apps.components.models import Component

logger = logging.getLogger("hurricane")

def example_check(app_configs=None, **kwargs):
"""
Check for existence of the MODEL Component in the database
"""

your check logic here
errors = []
logger.info("Our check has been called :]")
if not Component.objects.filter(title="Title").exists():

errors.append(
Error(

"an error",
hint="There is no main engine in the spacecraft, it need's to exist with␣

→˓the name 'Title'. "
"Please create it in the admin or by installing the fixture.",
id="components.E001",

)
)

return errors

The registration of a check can be done in the configuration file of the corresponding app. For instance:

apps/components/apps.py
from django.apps import AppConfig

class ComponentsConfig(AppConfig):
default_auto_field = "django.db.models.BigAutoField"
name = "apps.components"

def ready(self):
from django.core.checks import register

(continues on next page)

6 Chapter 2. Application Server

https://docs.djangoproject.com/en/2.2/topics/checks/
https://django-hurricane.io/custom-checks/

Hurricane

(continued from previous page)

from apps.components.checks import example_check

register(example_check, "hurricane", deploy=True)

In this case, the check is registered upon the readiness of the application. It means, that only after all the services of
the app i.e. the database are started, the check is registered and executed. If readiness is not required, check can be
registered in the main body of the config class.

Please note: register function takes as an argument a check function and a “hurricane” tag. It is absolutely essential
to register the check with this tag. Additionally deploy=True needs to be set.

The register function can be used as a decorator in different ways. For more information, please refer to the Django
system check framework.

2.3 Probe endpoints

There are three standard probe endpoints: startup-probe, liveness-probe and readiness-probe. All probe endpoints are
called regularly by Kubernetes, it allows to monitor the health and the status of the application. Upon unhealthy declared
applications (error-level) Kubernetes will restart the application and remove unhealthy PODs once a new instance is in
a healthy state. A port for the probe route is separated from the application’s port. If the probe port is not specified,
it will be set to the application port plus one e.g. if the application port is 8000, the probe port will be set to 8001.
For more information about probes on a Kubernetes side, please refer to Configure Liveness, Readiness and Startup
Probes.

Probe server creates handlers for three endpoints: startup, readiness and liveness.

where 1 is a Kubernetes startup probe, it returns a response with a status 400, if the application has not started yet or/and
management commands are not finished yet. After finishing management commands and starting HTTP Server this
endpoint will return a response of status 200 and from that point, Kubernetes will know, that the application was started,
so readiness and liveness probes can be polled. 2a and 2b are readiness and liveness probes respectively. Kubernetes
will poll these probes, only after the startup probe returns 200 for the first time. The readiness probe checks the length of
the request queue, if it is larger than the threshold, it returns 400, which means, that application is not ready for further
requests. The liveness probe uses Django system check framework to identify problems with the Django application.
3 are api requests, sent by the application service, which are then handled in Django application.

2.3. Probe endpoints 7

https://docs.djangoproject.com/en/2.2/topics/checks/
https://docs.djangoproject.com/en/2.2/topics/checks/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/

Hurricane

2.4 Management commands

Management commands can be added as options for the hurricane serve command. Kubernetes is be able to poll startup
probe and if management commands are still running, it knows, that it should not restart the container yet. Management
commands can be given as repeating arguments to the serve management command e.g.:

python manage.py serve --command makemigrations --command migrate

If you want to add some options to the specific management command take both this command and it’s options in the
quotation marks:

python manage.py serve --command "compilemessages --no-color"

Please note: management commands should be given in the order, which is required for django application. Each
management command is then executed sequentially. Commands, which depend on other commands should be given
after the commands they depend on. E.g. management_command_2 is depending on management_command_1, thus
the serve command should look like this:

python manage.py serve --command management_command_1 --command management_command_2

Probe server, which defines handlers for every probe endpoint, runs in the main loop. Execution of management
commands does not block the main event loop, as it runs in a separate executor. This way probes can be called by
Kubernetes during the execution of the management commands. Upon successful execution of management commands,
the HTTP server is started. If command execution was interrupted due to some error, the main loop is stopped and the
HTTP server is not going to be started.

2.5 Webhooks

Webhooks can be specified as command options of serve-command. Right now, there are available two webhooks:
startup- webhook and liveness-webhook. First is an indicator of the status of startup probe. Startup-webhook sends a
status, and depending on success or failure of startup process it can send either positive or negative status. Liveness-
webhook is triggered, when liveness-webhook url is specified and the liveness-probe is requested and the change of
the health state is detected. For instance, if liveness probe is requested, but there was no change of the health variable,
no webhook will be sent. Similarly, readiness webhook is sent upon the change of it’s state variable. Webhooks run
as asynchronous processes and thus do not block the asyncio-loop. If the specified url is wrong or it cannot handle
webhook properly, an error or a warning will be logged. Response of the webhook should be 200 to indicate the success
of receiving webhook.

Creating new webhook types The new webhook types can be specified in an easy manner in the hurri-
cane/webhooks/webhook_types.py file. They need to specify Webhook class as a parent class. After creating a new
webhook class, you can specify a new argument of the management command to parametrize the url, to which webhook
will be sent. Then, you can just create an object of webhook and run it at the place in code, where it should be executed.
Run method should have several methods i.e. url (to which webhook should be sent) and status (webhook on success
or failure).

8 Chapter 2. Application Server

Hurricane

2.6 Check migrations

When check-migrations option is enabled, hurricane checks if database is available and subsequently checks if there are
any unapplied migrations. It is executed in a separate thread, so the main thread with the probe server is not blocked.

2.7 Settings

HURRICANE_VERSION - is sent together with webhooks to distinguish between different versions.

2.8 Logging

It should be ensured, that the hurricane logger is added to Django logging configuration, otherwise log outputs will
not be displayed when application server will be started. Log level can be easily adjusted to own needs.

Example:

LOGGING = {
"version": 1,
"disable_existing_loggers": True,
"formatters": {"console":

{"format": "%(asctime)s %(levelname)-8s %(name)-12s %(message)s"}
},

"handlers": {
"console": {

"class": "logging.StreamHandler",
"formatter": "console",
"stream": sys.stdout,

}
},
"root": {"handlers": ["console"], "level": "INFO"},
"loggers": {

"hurricane": {
"handlers": ["console"],
"level": os.getenv("HURRICANE_LOG_LEVEL", "INFO"),
"propagate": False,

},
},

}

2.6. Check migrations 9

Hurricane

10 Chapter 2. Application Server

CHAPTER

THREE

AMQP WORKER

3.1 Run the AMQP (0-9-1) Consumer

In order to start the Django-powered AMQP consumer following consume-command can be used:

python manage.py consume HANDLER

This command starts a Pika-based amqp consumer which is observed by Kubernetes. The required Handler argument
is the dotted path to an _AMQPConsumer implementation. Please use the TopicHandler as base class for your handler
implementation as it is the only supported exchange type at the moment. It’s primarily required to implement the
on_message(. . .) method to handle incoming amqp messages.

In order to establish a connection to the broker you case use one of the following options: Load from Django Settings
or environment variables:

Variable Help
AMQP_HOST amqp broker host
AMQP_PORT amqp broker port
AMQP_VHOST virtual host (defaults to “/”)
AMQP_USER username for broker connection
AMQP_PASSWORD password for broker connection

The precedence is: 1. command line option (if available), 2. Django settings, 3. environment variable

Command options for consume-command:

Please note: req-queue-len parameter is set to a default value of 10. It means, that if the length of asynchronous tasks
queue will exceed 10, readiness probe will return status 400 until the length of tasks gets below the req-queue-len
value. Adjust this parameter if you want asynchronous task queue to be larger than 10.

3.2 Example AMQP Consumer

Implementation of a basic AMQP handler with no functionality:

file: myamqp/consumer.py
from hurricane.amqp.basehandler import TopicHandler

class MyTestHandler(TopicHandler):
def on_message(self, _unused_channel, basic_deliver, properties, body):

(continues on next page)

11

https://pika.readthedocs.io/en/stable/

Hurricane

(continued from previous page)

print(body.decode("utf-8"))
self.acknowledge_message(basic_deliver.delivery_tag)

This handler can be started using the following command:

python manage.py consume myamqp.consumer.MyTestHandler --queue my.test.topic --exchange␣
→˓test --amqp-host 127.0.0.1 --amqp-port 5672

12 Chapter 3. AMQP Worker

CHAPTER

FOUR

TEST HURRICANE

In order to run the entire test suite following commands should be executed:

shell
pip install -r requirements.txt
coverage run manage.py test
coverage combine
coverage report

Important: the AMQP testcase requires Docker to be accessible from the current user as it spins up a container with
RabbitMQ. The AMQP consumer in a test mode will connect to it and exchange messages using the TestPublisher
class.

13

Hurricane

14 Chapter 4. Test Hurricane

CHAPTER

FIVE

DEBUGGING DJANGO APPLICATIONS

Debugging a python/django or in fact any application running in a kubernetes cluster can be cumbersome. Some of
the most common IDEs use different approaches to remote debugging:

1. The Microsoft Debug Adapter Protocol (DAP) is used, among others, by Visual Studio Code and Eclipse. A
full list of supporting IDE’s can be found here. Here, the application itself must listen on a port and wait for the
debug client (in this case: the IDE’s debug UI) to connect.

2. Pycharm, which uses the pydevd debugger, sets up a debug server (you will have to configure a host and a port
in your IDE debug run config) and waits for the application to connect. Therefore, the application must know
where to reach the debug server.

Both approaches would usually require the application to contain code that is specific to the IDE/protocol used by the
developer. Django-hurricane supports these two approaches without the need for changes to your django project:

For the Debug Adapter Protocol (Visual Studio Code, Eclipse, . . .)

1. Install Django-hurricane with the “debug” option:

pip install django-hurricane[debug]

2. Run it with the “–debugger” flag, e.g.:

python manage.py serve --debugger

3. Optionally, provide a port (default: 5678), e.g.:

python manage.py serve --debugger --debugger-port 1234

4. Now you can connect your IDE’s remote debug client (configure the appropriate host and port).

For working with the Pycharm debugger:

1. Install Django-hurricane with the “pycharm” option:

pip install django-hurricane[pycharm]

2. Configure the remote debug server in Pycharm and start it.

3. Run your app with the “–pycharm-host” and “–pycharm-port” flags, e.g.

python manage.py serve --pycharm-host 127.0.0.1 --pycharm-port 1234

4. Now the app should connect to the debug server. Upon connection, the execution will halt. You must
resume it from Pycharm’s debugger UI.

For both approaches, you may have to configure path mappings in your IDE that map your local source code directories
to the corresponding locations inside the running container (e.g. “/home/me/proj/src” -> “/app”).

15

https://microsoft.github.io/debug-adapter-protocol/
https://microsoft.github.io/debug-adapter-protocol/implementors/tools/
https://github.com/fabioz/PyDev.Debugger

Hurricane

16 Chapter 5. Debugging Django applications

CHAPTER

SIX

METRICS

Hurricane comes with a small framework to collect and expose metrics about your application.

6.1 Builtin Metrics

Hurricane provides a few builtin metrics:

• request queue length

• overall request count

• average response time

• startup time metric

These metrics are collected from application start until application end. Keep in mind that these metrics do not exactly
represent the current state of the application - rather the current state since the start of the process. Startup time metric
is used for startup probe. It is set after all management commands were finished and HTTP server was started.

6.2 Custom Metrics

It is possible to define new custom metrics. The new metric class can inherit from StoredMetric class, which defines
methods for saving metric value into the registry and for value retrieval from the registry. It should include code
variable, which is used as a key for storing and retrieving value from the registry dictionary. Custom metric should be
also registered in a metric registry. This can be done by adding the following lines to init file of metrics package:

file: metrics/__init__.py
from hurricane.metrics.requests import <CustomMetricClass>

registry.register(<CustomMetricClass>)

17

Hurricane

6.3 Disable Metrics

If you’d like to disable the metric collection use the –no-metrics flag with the serve command:

python manage.py serve --no-metrics

18 Chapter 6. Metrics

CHAPTER

SEVEN

TODOS

Application server

• [x] Basic setup, POC, logging

• [x] Different endpoints for all Kubernetes probes

• [x] Extensive documentation

• [x] Django management command execution before serving

• [] actual Tornado integration (currently uses the tornado.wsgi.WSGIContainer)

• [] web sockets with Django 3

• [] Testing, testing in production

• [] Load-testing, automated performance regression testing

• [] Implement the Kubernetes Metrics API

• [x] Implement hooks for calling webservices (e.g. for deployment or health state changes)

• [] Add another metrics collector endpoint (e.g Prometheus)

Celery

• [] Concept draft

• [] Kubernetes health probes for celery workers

• [] Kubernetes health probes for celery beat

• [] Implement hooks for calling webservices (e.g. for deployment or health state changes)

• [] Implement the Kubernetes Metrics API

AMQP

• [x] Concept draft

• [] Kubernetes health probes for amqp workers

• [] Implement hooks for calling webservices (e.g. for deployment or health state changes)

• [] Implement the Kubernetes Metrics API

Guidelines

• [] Concept draft

• [] Cookiecutter template

• [] Container (Docker) best-practices

19

Hurricane

20 Chapter 7. Todos

CHAPTER

EIGHT

API REFERENCE

Here you find detailed descriptions of specific functions and classes.

8.1 hurricane.management

8.1.1 hurricane.management.commands.serve

class hurricane.management.commands.serve.Command(stdout=None, stderr=None, no_color=False,
force_color=False)

Start a Tornado-powered Django web server by using python manage.py serve <arguments>.

It can run Django management commands with the --command flag, that will be executed asynchronously. The
application server will only be started upon successful execution of management commands. During execution
of management commands the startup probe responds with a status 400.

Arguments:

• --static - serve collected static files

• --media - serve media files

• --autoreload - reload code on change

• --debug - set Tornado’s Debug flag

• --port - the port for Tornado to listen on

• --startup-probe - the exposed path (default is /startup) for probes to check startup

• --readiness-probe - the exposed path (default is /ready) for probes to check readiness

• --liveness-probe - the exposed path (default is /alive) for probes to check liveness

• --probe-port - the port for Tornado probe route to listen on

• --req-queue-len - threshold of length of queue of request, which is considered for readiness probe

• --no-probe - disable probe endpoint

• --no-metrics - disable metrics collection

• --command - repetitive command for adding execution of management commands before serving

• --check-migrations - check if all migrations were applied before starting application

• --webhook-url- If specified, webhooks will be sent to this url

• --max-lifetime- If specified, maximum requests after which pod is restarted

21

Hurricane

• --static-watch - If specified, static files will be watched for changes and recollected

add_arguments(parser)
Defines arguments, that can be accepted with serve command.

handle(*args, **options)
Defines functionalities for different arguments. After all arguments were processed, it starts the async event
loop.

8.1.2 hurricane.management.commands.consume

class hurricane.management.commands.consume.Command(stdout=None, stderr=None, no_color=False,
force_color=False)

Starting a Tornado-powered Django AMQP 0-9-1 consumer. Implements consume command as a manage-
ment command for django application. The new command can be called using python manage.py consume
<arguments>. Arguments:

• --queue - the AMQP 0-9-1 queue to consume from

• --exchange - the AMQP 0-9-1 exchange to declare

• --amqp-port - the message broker connection port

• --amqp-host - the host address of the message broker

• --amqp-vhost - the virtual host of the message broker to use with this consumer

• --handler - the Hurricane AMQP handler class (dotted path)

• --startup-probe - the exposed path (default is /startup) for probes to check startup

• --readiness-probe - the exposed path (default is /ready) for probes to check readiness

• --liveness-probe - the exposed path (default is /alive) for probes to check liveness

• --probe-port - the port for Tornado probe route to listen on

• --req-queue-len - threshold of length of queue of request, which is considered for readiness probe

• --no-probe - disable probe endpoint

• --no-metrics - disable metrics collection

• --autoreload - reload code on change

• --debug - set Tornado’s Debug flag

• --reconnect - try to reconnect this client automatically as the broker is available again

• --max-lifetime- If specified, maximum requests after which pod is restarted

add_arguments(parser)
Defines arguments, that can be accepted with consume command.

handle(*args, **options)
Defines functionalities for different arguments. After all arguments were processed, it starts the async event
loop.

22 Chapter 8. API Reference

Hurricane

8.2 hurricane.server

8.2.1 hurricane.server.django

class hurricane.server.django.DjangoHandler(application: tornado.web.Application, request:
tornado.httputil.HTTPServerRequest, **kwargs: Any)

This handler transmits all standard requests to django application. Currently it uses WSGI Container based on
tornado WSGI Container.

initialize()

Initialization of Hurricane WSGI Container.

async prepare()→ None
Transmitting incoming request to django application via WSGI Container.

class hurricane.server.django.DjangoLivenessHandler(application: tornado.web.Application, request:
tornado.httputil.HTTPServerRequest, **kwargs:
Any)

This handler runs with every call to the probe endpoint which is supposed to be used

class hurricane.server.django.DjangoProbeHandler(application: tornado.web.Application, request:
tornado.httputil.HTTPServerRequest, **kwargs:
Any)

Parent class for all specific probe handlers.

compute_etag()

Computes the etag header to be used for this request.

By default uses a hash of the content written so far.

May be overridden to provide custom etag implementations, or may return None to disable tornado’s default
etag support.

async get()

Get method, which runs the check.

async post()

Post method, which runs the check.

set_extra_headers(path)
Setting of extra headers for cache-control, namely: no-store, no-cache, must-revalidate and max-age=0. It
means that information on requests and responses will not be stored.

class hurricane.server.django.DjangoReadinessHandler(application: tornado.web.Application, request:
tornado.httputil.HTTPServerRequest,
**kwargs: Any)

This handler runs with every call to the probe endpoint which is supposed to be used with Kubernetes ‘Readi-
ness Probes’. The DjangoCheckHandler calls Django’s Check Framework which can be used to determine the
application’s health state during its operation.

class hurricane.server.django.DjangoStartupHandler(application: tornado.web.Application, request:
tornado.httputil.HTTPServerRequest, **kwargs:
Any)

This handler runs with every call to the probe endpoint which is supposed to be used with Kubernetes ‘Startup
Probes’. It returns 400 response for post and get requests, if StartupTimeMetric is not set, what means that the
application is still in the startup phase. As soon as StartupTimeMetric is set, this handler returns 200 response

8.2. hurricane.server 23

Hurricane

upon request, which indicates, that startup phase is finished and Kubernetes can now poll liveness/readiness
probes.

class hurricane.server.django.DjangoStaticFilesHandler(application: tornado.web.Application,
request:
tornado.httputil.HTTPServerRequest,
**kwargs: Any)

This handler transmits all static requests to django application. Currently it uses WSGI Container based on
tornado WSGI Container.

initialize()

Initialization of Hurricane WSGI Container.

8.2.2 hurricane.server.wsgi

class hurricane.server.wsgi.HurricaneWSGIContainer(handler, wsgi_application)
Wrapper for the tornado WSGI Container, which creates a WSGI-compatible function runnable on Tornado’s
HTTP server. Additionally to tornado WSGI Container should be initialized with the specific handler.

exception hurricane.server.wsgi.HurricaneWSGIException

8.3 hurricane.metrics

8.3.1 hurricane.metrics.base

class hurricane.metrics.base.AverageMetric(code=None, initial=None)
Calculating average of a metric.

classmethod add_value(value)
Implements the running (online) average of a metric.

class hurricane.metrics.base.CounterMetric(code=None, initial=None)
Metric, that can be incremented and decremented.

classmethod decrement()

Decrement value from the metric.

classmethod increment()

Increment value to the metric.

class hurricane.metrics.base.StoredMetric(code=None, initial=None)
Base class for storing metrics in registry.

classmethod get()

Getting value of metric from registry.

classmethod get_from_registry()

Getting metric from registry using metric code.

classmethod set(value)
Setting new value for metric.

24 Chapter 8. API Reference

Hurricane

8.3.2 hurricane.metrics.registry

class hurricane.metrics.registry.MetricsRegistry

Registering metrics and storing them in a metrics dictionary.

8.3.3 hurricane.metrics.requests

class hurricane.metrics.requests.HealthMetric(code=None, initial=None)

class hurricane.metrics.requests.ReadinessMetric(code=None, initial=None)

class hurricane.metrics.requests.RequestCounterMetric(code=None, initial=None)
Defines request counter metric with corresponding metric code.

class hurricane.metrics.requests.RequestQueueLengthMetric(code=None)
Defines request queue length metric with corresponding metric code.

get_value()

Getting length of the asyncio queue of all tasks.

class hurricane.metrics.requests.ResponseTimeAverageMetric(code=None, initial=None)
Defines response time average metric with corresponding metric code.

class hurricane.metrics.requests.StartupTimeMetric(code=None, initial=None)

8.3.4 hurricane.metrics.exceptions

exception hurricane.metrics.exceptions.MetricIdAlreadyRegistered

Exception class for the case, that metric was already registered and should not be registered twice.

8.4 hurricane.amqp

8.4.1 hurricane.amqp.basehandler

class hurricane.amqp.basehandler.TopicHandler(queue_name: str, exchange_name: str, host: str, port:
int, vhost: Optional[str] = None, username:
Optional[str] = None, password: Optional[str] = None)

This handler implements Hurricane’s base AMQP consumer that handles unexpected interactions with the mes-
sage broker such as channel and connection closures. The EXCHANGE_TYPE is topic.

8.4.2 hurricane.amqp.worker

class hurricane.amqp.worker.AMQPClient(consumer_klass:
Type[hurricane.amqp.basehandler._AMQPConsumer],
queue_name: str, exchange_name: str, amqp_host: str,
amqp_port: int, amqp_vhost: str)

This is the AMQP Client that will reconnect, if the nested handler instance indicates that a reconnect is necessary.

8.4. hurricane.amqp 25

Hurricane

run(reconnect: bool = False)→ None
If reconnect is True, AMQP consumer is running in auto-connect mode. In this case consumer will be
executed. If any exception occurs, consumer will be disconnected and after some delay will be reconnected.
Then consumer will be restarted. KeyboardInterrupt exception is handled differently and stops consumer.
In this case IOLoop will be terminated.

If reconnect is false, consumer will be started, but no exceptions and interruptions will be tolerated.

8.5 hurricane.webhooks

8.5.1 hurricane.webhooks.base

class hurricane.webhooks.base.Webhook(code=None)
Base class for webhooks in the registry. Run function initiates sending of webhook to the specified url.

classmethod get_from_registry()

Getting webhook from registry using the code.

run(url: str, status: hurricane.webhooks.base.WebhookStatus, error_trace: Optional[str] = None,
close_loop: bool = False, loop=None)
Initiates the sending of webhook in an asynchronous manner. Also specifies the callback of the async
process, which handles the feedback and either logs success or failure of a webhook sending process.

url : Url, which webhook should be sent to status : can be either WebhookStatus.FAILED or Webhook-
Status.SUCCEEDED depending on the success or failure of the process, which should be indicated by the
webhook error_trace : specifies the error trace of the preceding failure close_loop : specifies, whether the
main loop should be closed or be left running

class hurricane.webhooks.base.WebhookStatus(value)
An enumeration.

8.5.2 hurricane.webhooks.registry

class hurricane.webhooks.registry.WebhookRegistry

Registering webhooks and storing them in a webhooks dictionary.

8.5.3 hurricane.webhooks.webhook_types

class hurricane.webhooks.webhook_types.LivenessWebhook

class hurricane.webhooks.webhook_types.ReadinessWebhook

class hurricane.webhooks.webhook_types.StartupWebhook

26 Chapter 8. API Reference

Hurricane

8.5.4 hurricane.webhooks.exceptions

exception hurricane.webhooks.exceptions.WebhookCodeAlreadyRegistered

Exception class for the case, that metric was already registered and should not be registered twice.

8.6 Indices and tables

• genindex

• modindex

• search

8.6. Indices and tables 27

Hurricane

28 Chapter 8. API Reference

PYTHON MODULE INDEX

h
hurricane.amqp.basehandler, 25
hurricane.amqp.worker, 25
hurricane.management.commands.consume, 22
hurricane.management.commands.serve, 21
hurricane.metrics.base, 24
hurricane.metrics.exceptions, 25
hurricane.metrics.registry, 25
hurricane.metrics.requests, 25
hurricane.server.django, 23
hurricane.server.wsgi, 24
hurricane.webhooks.base, 26
hurricane.webhooks.exceptions, 27
hurricane.webhooks.registry, 26
hurricane.webhooks.webhook_types, 26

29

Hurricane

30 Python Module Index

INDEX

A
add_arguments() (hurri-

cane.management.commands.consume.Command
method), 22

add_arguments() (hurri-
cane.management.commands.serve.Command
method), 22

add_value() (hurricane.metrics.base.AverageMetric
class method), 24

AMQPClient (class in hurricane.amqp.worker), 25
AverageMetric (class in hurricane.metrics.base), 24

C
Command (class in hurri-

cane.management.commands.consume),
22

Command (class in hurri-
cane.management.commands.serve), 21

compute_etag() (hurri-
cane.server.django.DjangoProbeHandler
method), 23

CounterMetric (class in hurricane.metrics.base), 24

D
decrement() (hurricane.metrics.base.CounterMetric

class method), 24
DjangoHandler (class in hurricane.server.django), 23
DjangoLivenessHandler (class in hurri-

cane.server.django), 23
DjangoProbeHandler (class in hurri-

cane.server.django), 23
DjangoReadinessHandler (class in hurri-

cane.server.django), 23
DjangoStartupHandler (class in hurri-

cane.server.django), 23
DjangoStaticFilesHandler (class in hurri-

cane.server.django), 24

G
get() (hurricane.metrics.base.StoredMetric class

method), 24

get() (hurricane.server.django.DjangoProbeHandler
method), 23

get_from_registry() (hurri-
cane.metrics.base.StoredMetric class method),
24

get_from_registry() (hurri-
cane.webhooks.base.Webhook class method),
26

get_value() (hurricane.metrics.requests.RequestQueueLengthMetric
method), 25

H
handle() (hurricane.management.commands.consume.Command

method), 22
handle() (hurricane.management.commands.serve.Command

method), 22
HealthMetric (class in hurricane.metrics.requests), 25
hurricane.amqp.basehandler

module, 25
hurricane.amqp.worker

module, 25
hurricane.management.commands.consume

module, 22
hurricane.management.commands.serve

module, 21
hurricane.metrics.base

module, 24
hurricane.metrics.exceptions

module, 25
hurricane.metrics.registry

module, 25
hurricane.metrics.requests

module, 25
hurricane.server.django

module, 23
hurricane.server.wsgi

module, 24
hurricane.webhooks.base

module, 26
hurricane.webhooks.exceptions

module, 27
hurricane.webhooks.registry

31

Hurricane

module, 26
hurricane.webhooks.webhook_types

module, 26
HurricaneWSGIContainer (class in hurri-

cane.server.wsgi), 24
HurricaneWSGIException, 24

I
increment() (hurricane.metrics.base.CounterMetric

class method), 24
initialize() (hurricane.server.django.DjangoHandler

method), 23
initialize() (hurricane.server.django.DjangoStaticFilesHandler

method), 24

L
LivenessWebhook (class in hurri-

cane.webhooks.webhook_types), 26

M
MetricIdAlreadyRegistered, 25
MetricsRegistry (class in hurricane.metrics.registry),

25
module

hurricane.amqp.basehandler, 25
hurricane.amqp.worker, 25
hurricane.management.commands.consume, 22
hurricane.management.commands.serve, 21
hurricane.metrics.base, 24
hurricane.metrics.exceptions, 25
hurricane.metrics.registry, 25
hurricane.metrics.requests, 25
hurricane.server.django, 23
hurricane.server.wsgi, 24
hurricane.webhooks.base, 26
hurricane.webhooks.exceptions, 27
hurricane.webhooks.registry, 26
hurricane.webhooks.webhook_types, 26

P
post() (hurricane.server.django.DjangoProbeHandler

method), 23
prepare() (hurricane.server.django.DjangoHandler

method), 23

R
ReadinessMetric (class in hurricane.metrics.requests),

25
ReadinessWebhook (class in hurri-

cane.webhooks.webhook_types), 26
RequestCounterMetric (class in hurri-

cane.metrics.requests), 25
RequestQueueLengthMetric (class in hurri-

cane.metrics.requests), 25

ResponseTimeAverageMetric (class in hurri-
cane.metrics.requests), 25

run() (hurricane.amqp.worker.AMQPClient method), 25
run() (hurricane.webhooks.base.Webhook method), 26

S
set() (hurricane.metrics.base.StoredMetric class

method), 24
set_extra_headers() (hurri-

cane.server.django.DjangoProbeHandler
method), 23

StartupTimeMetric (class in hurri-
cane.metrics.requests), 25

StartupWebhook (class in hurri-
cane.webhooks.webhook_types), 26

StoredMetric (class in hurricane.metrics.base), 24

T
TopicHandler (class in hurricane.amqp.basehandler),

25

W
Webhook (class in hurricane.webhooks.base), 26
WebhookCodeAlreadyRegistered, 27
WebhookRegistry (class in hurri-

cane.webhooks.registry), 26
WebhookStatus (class in hurricane.webhooks.base), 26

32 Index

	Introduction
	Application Server
	Run the application server
	Django System Custom Checks
	Probe endpoints
	Management commands
	Webhooks
	Check migrations
	Settings
	Logging

	AMQP Worker
	Run the AMQP (0-9-1) Consumer
	Example AMQP Consumer

	Test Hurricane
	Debugging Django applications
	Metrics
	Builtin Metrics
	Custom Metrics
	Disable Metrics

	Todos
	API Reference
	hurricane.management
	hurricane.management.commands.serve
	hurricane.management.commands.consume

	hurricane.server
	hurricane.server.django
	hurricane.server.wsgi

	hurricane.metrics
	hurricane.metrics.base
	hurricane.metrics.registry
	hurricane.metrics.requests
	hurricane.metrics.exceptions

	hurricane.amqp
	hurricane.amqp.basehandler
	hurricane.amqp.worker

	hurricane.webhooks
	hurricane.webhooks.base
	hurricane.webhooks.registry
	hurricane.webhooks.webhook_types
	hurricane.webhooks.exceptions

	Indices and tables

	Python Module Index
	Index

